Dennis W. Hancock, Forage Extension Specialist, Crop & Soil Sciences Dept.
Ray Hicks, County Extension Coordinator, Screven County
Steven P. Morgan, County Extension Coordinator, Harris County
Randy W. Franks, County Extension Coordinator, Wayne County

Legume species add significantly to forage systems in Georgia. They are an excellent source of high quality forage, and are generally very digestible and contain high levels of crude protein (CP). Many legumes also provide substantial forage yields. Perhaps most importantly, legumes and the rhizobium bacteria that colonize nodules on their roots provide an important source of biologically-fixed nitrogen (N). This publication presents information about the most important legume species grown for forage in Georgia.

legumes cover art

    Cool Season Annual Legumes

    Cool season (winter) annual legumes are generally planted in the fall and provide forage in late fall and spring. These plants flower and produce seed in late spring and die soon after seeds mature. Cool season annual legumes differ substantially in their preferred soil characteristics, growth distribution, cold tolerance, bloat potential and reseeding potential (Table 1). These species can be used for grazing (typically the best use) or for making hay, silage or grass-legume mixtures. Most cool season annual legumes are susceptible to several disease problems, nematodes and insects. When available, species and varieties with good pest resistance should be chosen to minimize management problems.

    Table 1. Minimum soil characteristics and management traits of selected cool season annual legumes.
    Species   Soil Management Traits
    Min. pH Texture Drainage Maturity Cold Tolerance Bloat Potential Reseeding Potential
    Arrowleaf clover 6.0 sand, loam good late good low high
    Ball clover 6.0 sand, loam, clay loam fair medium good high high
    Berseem clover 6.5 loam, clay poor medium poor low low
    Crimson clover 5.5 sand, loam good early good medium low
    Medics, annual 7.0 sand, loam, clay fair early poor high high
    Persian clover 6.0 loam, clay poor medium fair high high
    Red clover§ 5.5 loam, clay good late good low low
    Rose clover 6.0 sand, loam, clay good medium good low high
    Subterranean clover 6.0 loam clay fair medium fair medium low
    Vetch, hairy 5.5 sand, loam, clay good medium good low low
    Winter pea 6.0 loam, clay loam good medium poor low low
    Adapted from Evers, 2005.
    ‡ Minimum soil pH value (water pH equivalent) for acceptable yields.
    § Red clover is a perennial clover species; however, it is often used as a late-maturing cool season annual legume in the Coastal Plain Region. When used as a perennial, it has a medium to high potential for reseeding.

    Arrowleaf Clover

    Arrowleaf Clover

    Arrowleaf clover is a highly productive winter annual grown from East Texas to Georgia. It is most productive when grown on well-drained loam or sandy loam soils but can do well on well-drained clay soils. It will not tolerate acid soils. Arrowleaf generally produces less forage in late fall and winter than crimson clover but can usually produce up to six weeks or longer in spring. In most areas of Georgia, it will provide excellent quality grazing until late May. Digestibility remains high until maturity. Arrowleaf is a good clover to include in grazing mixtures since it has a very low bloat potential and its late spring production of excellent-quality forage extends the grazing season.

    Arrowleaf is a prolific seed producer, particularly of hard seed. To allow reseeding, remove animals from the paddocks or reduce stocking rates in late April or early May when the clover starts to flower. WARNING: If arrowleaf has been grown in a pasture for several years, its ability to reseed dependably is seriously compromised by a Fusarium spp. disease complex.

    Sod-seeding arrowleaf into warm season perennial pastures is an excellent way to achieve spring grazing and to introduce biologically-fixed N into the system. Unchecked vigorous spring growth can reduce early spring growth of the perennial grass. To avoid a full canopy developing over the perennial grass in overseeded pastures, closely graze arrowleaf clover during the spring.

    Arrowleaf will continue to produce new leaves and remain productive until late spring or early summer if grazing is managed to keep it between two and six inches tall. This management also will help improve light and air movement into the canopy, thus reducing disease problems. Arrowleaf will often exhibit symptoms of stress (e.g., purpling of the leaves) in response to fertility problems, cold stress or disease.

    Several varieties of arrowleaf clover are available in the Southeast. Although many varieties are affected by a virus complex that can drastically reduce yields, some cultivars are now available that have demonstrated improved resistance to these viruses.

    Ball Clover

    Ball clover has long, highly-branched stems that support white to yellowish-white flowered seed heads that look similar to white clover seed heads. Ball clover produces most of its growth about one month later in spring than crimson clover, and generally produces less total forage. However, it is an excellent reseeder, even under close grazing, and produces seed heads close to the ground. It is more tolerant of wet soils than crimson, but does not do well if soil pH drops below 6.0.

    Berseem Clover

    Berseem clover, a non-bloating winter annual, is adapted to southern Georgia. Stands in north Georgia are frequently winterkilled. Berseem has a longer grazing season, lower bloat potential and produces higher yields than crimson clover. Berseem is not tolerant of acid soils, but typically does better than many other winter annual legumes in poorly-drained sites. Berseem also has a higher boron requirement than other annual clovers and often does better on soils with more organic matter. Berseem is not a good reseeder.

    Crimson Clover

    Crimson clover often serves as a benchmark for other cool season annual legumes. Crimson furnishes some grazing in late fall and winter and abundant grazing in early spring. Crimson matures (flowers) earlier in spring than other annual clovers, has a shorter grazing season and produces high yields even in cool winters. Several varieties are now available that mature very early, allowing it to grow, be used, add biologically-fixed N to the soil and die with minimal competition with warm season perennial grasses. It grows best on well-drained soils and is frequently used in mixtures with ryegrass and small grains for winter grazing. It is also commonly used to overseed bermudagrass and bahiagrass pastures. Unfortunately, crimson produces relatively little hard seed and its seed heads are often damaged by clover head weevils. As a result, crimson clover usually does not reseed well in a grazing system.

    Ball Berseem and Crimson Clovers


    Red Clover

    Red Rose and Subterranean Clovers

    Red clover is a short-lived, cool season perennial found in north Georgia and is commonly used as an annual in south Georgia. Red clover is often confused with crimson clover. While crimson clover produces dark red and elongated seed heads, red clover seed heads are typically round and a lighter red or lavender in color. Although it produces good yields (often more than two tons per acre), red clover matures much later than crimson clover. This later maturity fits better with annual ryegrass. Red clover does not recover from defoliation as quickly as arrowleaf and crimson and therefore may be easily damaged by overgrazing or selective grazing. Red clover fits well in management-intensive grazing systems where animals are prevented from grazing it too heavily.

    Rose Clover

    Rose clover is commonly grown in California, and had not been widely grown in the Southeast until recently. It has hairy leaves and stems. It is winter dormant and produces forage and flowers later than crimson (although it matures earlier than arrowleaf). It is more drought-tolerant, more tolerant of acid soil conditions and is a better reseeder than crimson. It generally stands up well under heavy grazing, but animals should be removed in mid-April to allow the stand to produce seed.

    Subterranean Clover

    Subterranean clover (sub clover) is native to the Mediterranean and the Near East and is well-adapted to areas with relatively warm, moist winters and dry summers. Sub clover is low growing (less than 1½ feet tall), but will create a very dense forage mat.

    Its inconspicuous flowers will form burs after fertilization. The stiff-forked bristles of the seed bur allow it to peg or bury itself into the soil (much like peanuts), hence the name “subterranean” clover. It also produces hard seed with a high temperature requirement for emerging from dormancy. Although it is capable of good reseeding, in most management systems it is not feasible to allow the stand to progress to this advanced maturity stage.

    Sub clover is best adapted to overseeding on perennial grass pastures. It provides forage in late winter and early spring. In a stocker program, sub clover overseeded on permanent summer pastures can serve as a reserve feed source. The productive season is similar to crimson clover.


    Various species of vetch (hairy vetch, bigflower vetch, common vetch) are sometimes used in Georgia forage systems, with hairy vetch the most commonly grown. Their viney stems support compound leaves with narrow leaflets. Species are most easily distinguished by flower color (hairy: purple; bigflower: yellow-white; common: white).

    Vetches are usually seeded in combination with a small grain and/or ryegrass on a prepared seedbed for winter grazing or silage. Close grazing will result in the loss of the bud (growing point).

    Hairy and common vetch mature later in spring than crimson clover, but are cold-hardy, more tolerant of low soil pH than most clovers, and have a low bloat potential. Some common vetch varieties have been developed that are resistant to root-knot nematodes.

    Hairy Bigflower and Common Vetch


    Winter Pea

    Winter Pea

    Winter pea (Austrian winter pea) produces a viney stem that will extend from two to four feet in length and produce white, yellow or purple flowers. Winter pea stems are often damaged by treading and are not well-suited for pastures. However, winter peas are frequently seeded with rye, wheat or oats for silage production. Winter peas should not be planted north of the lower Piedmont region because they are not cold hardy. Diseases can also substantially reduce yields.

    Information about specific varieties of recommended cool season annual legume species may be found on the "Forage Species and Varieties Recommended for Use in Georgia" webpage.

    Other Minor Cool Season Annual Legumes

    Hop Clover

    Hop clover is a small, fine-stemmed winter annual that grows best on upland soils. It reseeds readily and furnishes some grazing in late winter and early spring. Seed are not commercially available, but it volunteers in many pastures. Yields are usually quite low and it contributes relatively little biologically-fixed N to the soil.


    Several annual medics, including black medic, are commonly found in forage systems in Georgia. Like hop clover, they are rarely planted intentionally. Medics are excellent reseeders, thus they usually volunteers and fill thin areas of the pasture. Most medics yield less than one-third that of other winter annual legumes. Southern or spotted burclover (a type of medic) grows in late winter and spring, but animals generally do not graze burclover once it begins to mature. Burclover produces seed in abundance and reseeds readily, but has not been used extensively in Georgia because of poor yields.

    Persian Clover

    Despite being a relatively low-yielding cool season annual legume with a short growing season, persian clover performs well under close grazing. It tolerates poor drainage and soil acidity down to pH 5.5, but it has a high bloat potential. Its pink seed head produces a fair amount of hard seed and it has the potential for good reseeding.

    Lupine (or Lupin)

    Lupines are best adapted to sandy loam and loamy sand soils. Since they generally are not cold hardy, they should not be planted north of the lower Piedmont region. Lupines were used relatively extensively prior to World War II as a supply of nitrogen for cotton in the Coastal Plain region. Lupine grows slowly in fall and winter, but vigorously in spring. Plants will flower from late March to early April. The relatively short productive season limits lupine’s use in forage programs. Lupines also commonly contain bitter alkaloids that make them less palatable to livestock than most legumes, but low-alkaloid “sweet” varieties are available that are suitable for forage use.

    Establishment of Cool Season Annual Legumes

    Cool season annual legumes can either be established on a prepared seedbed or overseeded on warm season perennial grass pastures. Planting with a drill (using the small seed box) or by broadcasting the legume seed can result in satisfactory stands. However, the seeding rate needs to be adjusted to compensate for the differences in these planting methods (Table 2). Information on broadcasting legume seed is detailed in "Seeding Methods for Small-Seeded Legumes."

    Table 2. Seeding rates for achieving a solid stand of selected cool season annual legumes.

    Solid Stand†
    Drill Broadcast
     (lbs. of pure live seed/acre)
    Arrowleaf clover 5-7 8-10
    Ball clover 2-3
    Berseem clover 10-15 18-20
    Crimson clover 15-20 20-30
    Red clover 8-10 12-15
    Rose clover 15-20 20-25
    Subterranean clover 8-10 10-20
    Vetch, hairy 15-20 20-25
    Winter pea 20-25 30-35
    † When only one legume is seeded — not in a mixture with grasses or other legumes (e.g., sod-seeding into bermudagrass).

    When planting into dormant warm season grass sod, one or more legumes may be used to achieve a solid legume stand. When planted in a prepared seedbed, these legumes are often mixed with a small grain crop or ryegrass. Seeding rates for the legumes used in such mixtures need to be adjusted to minimize seed costs and prevent excessive competition (Table 3).

    Planting too deep is not usually a problem when legumes are broadcast on dormant warm season perennial grass sod. However, when legumes (especially small-seeded species) are being drilled or broadcast onto a prepared seedbed, special care should be taken to ensure that the seeds are not planted more than ¼- to ½-inch deep (see "Seeding Methods for Small-Seeded Legumes"). Large-seeded legumes such as lupine or common vetch can be planted up to one inch deep.

    Table 3. Seeding rates for selected cool season annual legumes used alone or in combination with other legumes in a mixture.

    Single Clover
    in Mixture‡
    Multiple Clovers
    in Mixture§
    (lbs. of pure live seed/acre)
    Arrowleaf clover 6-8 5-6
    Ball clover 2-3 1-2
    Berseem clover 15-20 10-15
    Crimson clover 15-20 10-12
    Red clover 8-12 6-8
    †Use lower seeding rates when planting into a prepared seedbed or no-tilled into existing sod (overseeding). Use higher seeding rates when seed is broadcast.
    ‡Winter annual clovers are typically grown with one or more winter annual grass.
    §Often, two or more clover species will be grown with the grass. The seeding rate of an individual clover species can be reduced if multiple clovers are included in the mix.

    Seeding Methods for Small-Seeded Legumes

    Ideally, small-seeded legumes should be planted using a cultipacker-seeder (prepared seedbeds only) or the small-seed box on a no-till or conventional drill. This provides the most accurate seeding rate control. However, the use of a no-till or conventional drill often results in small-seeded legumes being planted too deep (i.e., deeper than ½-inch). Some drills cannot be adequately adjusted to maintain a consistently shallow planting depth. Planting depth is harder to control when planting into wet soil, a soft seedbed or rough ground.

    If these equipment or condition limitations exist, successful seed placement can occur if the seed are broadcast directly behind the drill’s shoes and in front of the press wheels. To do this, disconnect the tubes from the small seed box where it enters the drill’s shoes and secure the tubes behind the shoes or in front of the press wheels with wire or cable ties. This should allow the seed to be metered out on the soil surface, and the press wheels (with proper down-pressure) should firm the soil around the seed. This practice will ensure that the seeds are not planted too deep.

    Accurately broadcasting small-seeded legumes (i.e., legumes with seeding rates less than eight to 10 lbs./acre) is difficult with large spinner-spreaders. If the available equipment cannot be adjusted to apply the low rate that is required, the inoculated seed can be mixed with coarse sand or some other inert material that is similar in size and weight. Smaller seeds should not be mixed with larger seeds in the hopper or seed boxes, since the small seeds will settle to the bottom. Also, legume seeds should not be mixed with fertilizer, since the fertilizer may kill the inoculant.

    Broadcasted seed may not have sufficient seed-soil contact. Conventional-till seedbeds should be firmed with a cultipacker before seed are broadcast. Footprints left by an average person on a properly prepared seedbed should not be more than ¼-inch deep. Broadcast seeding on a prepared seedbed should be followed with adequate firming of the seedbed with a cultipacker.

    When planting into an existing sod, broadcasted seed should be “scratched-in” to the soil using a chain drag or spike-toothed harrow. Some producers have also successfully used a pasture aerator. However, the aggressive use of a drag, harrow or aerator can damage the sod and/or expose areas to soil erosion or weed encroachment.

    Cool Season Perennial Legumes

    Cool season perennial legumes are most productive in the spring and fall, when temperatures and rainfall usually provide favorable growing conditions. These species slow down or even go dormant during the summer (especially if not irrigated) and have the potential to survive for more than one year.



    Alfalfa is often referred to as the “Queen of Forages” because it produces high yields that are highly digestible and high in protein. Alfalfa can be effectively utilized in managed grazing, hay or silage systems. It is often used in rations when nutritional needs are very high.

    Alfalfa requires a combination of proper soil characteristics (deep, well-drained, fertile, low acidity, etc.) with outstanding management (appropriate variety selection, timely harvests, pest control, etc.) to maintain long-lived, productive stands. It develops a deep root system if root growth is not restricted by hardpans, high water tables or acid subsoil.

    Alfalfa can be grown in suitable soils throughout the state. In general, well-drained bottomlands in the Limestone Valley/Mountains and Piedmont regions will provide the best results. Within the Coastal Plain region, sandy loam soils provide good sites, especially if irrigation is available. Most sites in the Atlantic Coast Flatwoods and Tidewater areas will not be sufficiently well-drained to successfully produce alfalfa.

    Alfalfa requires a relatively neutral soil pH (6.5 to 6.8) and non-limiting levels of essential nutrients. Alfalfa is especially sensitive to potassium (K), phosphorus (P), boron (B) and molybdenum (Mo) deficiencies. Close adherence to soil test recommendations during and after establishment is critical.

    Alfalfa stands eventually thin to a point where the land must be rotated out, often due to insufficient soil fertility. Disease pressure, insect damage, poor weed control, overgrazing and improper cutting management also contribute to poor persistence. Stands in the Coastal Plain region generally have a shorter life (two to five years) than stands on the heavier soils in north Georgia. It is not uncommon for stands to persist for four to seven years (or longer) in the Piedmont and Limestone Valley/Mountains regions.

    Establishing Alfalfa

    For monoculture stands, it is best to seed alfalfa on a well-prepared, firm seedbed. On prepared land, plowing and disking operations should be done as needed to incorporate pre-plant applications of lime and fertilizer and to ensure a good, firm seedbed. A preemergence application of a labeled herbicide such as EPTC (Eptam) or benefin (Balan) is desirable (for currently labeled herbicides, see the Georgia Pest Management Handbook. Alfalfa may be seeded with a cultipacker-seeder (best) or a grain drill with a small seed attachment. Cultipacking or rolling before and after seeding will give a firm seedbed and improve stands.

    When seeding alfalfa with a grass such as tall fescue or orchardgrass, drill the grass in rows and immediately overseed the alfalfa with a cultipacker-seeder. For seeding into existing cool season grass sods (e.g., tall fescue, orchardgrass), suppress the grass by closely mowing or grazing, follow with a contact herbicide, and then plant with a no-till drill.

    When planting alfalfa into a bermudagrass sod, ensure that the grass is dormant and closely mowed or grazed. If the stand is to be primarily an alfalfa stand, use a row spacing of 15 inches or less. If the stand is to be managed as a mixture of bermudagrass and alfalfa, use a row spacing of at least 21 inches.

    Alfalfa should be seeded at a rate of 18 to 25 lbs. per acre (Table 4). Rates at the high end of this range should be used when planting with a no-till drill. Regardless of the system used to plant the alfalfa, the seed should not be placed too deep (?- to ¼-inch in loamy or clay loam soils; ¼- to ½-inch in sandy loam or sandy soils). Soil should be firm around the seed to provide proper seed-soil contact. An insecticide application after initial germination may be needed to control insects such as field crickets.

    Table 4. Seeding rate of selected cool season perennial legume species when broadcast, drilled, or planted with a cultipacker-seeder (CPS).

    Legume Species
    Method Seeding Rate
    (lbs of pure live

    Status and Revision History
    Published on Nov 04, 2008
    Published with Full Review on Nov 04, 2011
    Published with Full Review on Nov 30, 2014
    Published with Minor Revisions on Dec 13, 2018

    Dennis Hancock Professor and Extension Agronomist for Forage Crops (Pasture, Hay, and Silage), Crop & Soil Sciences Randy W. Franks County Extension Agent Retiree Rehire, Southeast District Steve Morgan ANR County Extension Agent/Coordinator, Northwest District Ray Hicks County Extension Coordinator, Southeast District
    Have a question? Contact your local UGA Extension office to find out how our team of county agents can assist you.
    Set County Preference