Grade K

TINKER VEGGIES

Georgia Performance Standards Covered:

• **MCCK.G.5** – Model shapes in the world by building shapes from components (e.g. sticks and clay balls) and drawing shapes.

• **MCCK.G.4** – Analyze and compare 2-D and 3-D shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g. number of sides and vertices/"corners") and other attributes (such as having sides of equal length)

• **MCCK.G.3** – Identify shapes as 2-D (lying in a plane, flat) or 3-D (solid).

• **MCCK.G.2** – Correctly name shapes regardless of their orientation or overall size.

Essential Questions:

What shapes are the school garden vegetables?
What shapes can you make with the veggies?

Objectives:

• Reinforce recognition and differentiation of shapes using garden produce

• Provide students the opportunity to experiment modeling shapes themselves

• Encourage healthy snacking habits by increasing familiarity with vegetables in a hands-on activity

Key Words & Terms:
Model
Sphere
Cone
Cube
Circle
Square
Rectangle
Triangle

Abstract:
For once your students will be encouraged to put their toys in their mouths! In this lesson garden veggies serve double duty as shape building units and fun snacks.

Materials:

• Skewer pieces and/or toothpicks – about 15 per student

• Wire or string (optional) – 2 or 3 foot long pieces per student

• Variety of vegetables/fruits for tinkering, recommended – 15 pieces per student:
Variety of vegetables/fruits for demonstrating, recommended – 2 of each:
- Beets/ turnips for circles and sphere, form to cubes and squares
- Zucchini/cucumber with ends cut off for circles and cylinders
- Carrots/ pears for triangles, pyramids and cones
- Eggplant and melon are good for carving any 3-D shape
- Lettuce and dark green leaves can be used to cut out 2-D shapes

Knives/ mandolin (for teacher use only)

Plates – 1 per student

Trays or Tupperware – 1 per group

Procedure:

Review and Demo

1. In the garden, challenge students to look around the garden and identify all the 2-D (flat) shapes they see. Prompt by asking what shape is ...
 - The garden bed border?
 - The spout of the watering can?
 - The spout of the watering hose?
 - The head of the hand shovels (or other garden tools)?

2. After identifying some of the more obvious 2-D shapes in the man-made objects, introduce the whole demonstration vegetables/ fruits. Have students identify the 3-D (solid) shape that corresponds to the whole veggie/ fruit (or the carved shape in the case of eggplant & watermelon). Also prompt students to identify the 3-D shape of the vegetables currently growing on the garden plants.

3. Cut a middle slice out of each whole vegetable (/carved vegetable) in front of the students to represent the 2-D shapes that relate to the 3-D shapes. Ask them to name the slice, then the whole.
 - Example – After students identify a carrot as a cone, cut a long slice out of the middle to show a triangle. Hold up each to clearly illustrate the difference between 2-D and 3-D shapes.
 - Be sure to have examples of 1) sphere/ cylinder & circle slice, 2) cube/ rectangular prism & square slice, 3) cone/ pyramid & triangle slice, 4) cylinder/ rectangular prism & rectangle slice, as a minimum.

4. Use the whole and slice pairs to compare & contrast their 3-D and 2-D shapes by characteristics such as vertices/ corners, number of sides, etc. This will help further cement the differentiation between 2-D and 3-D.
 - Example with cucumber (cylinder with middle rectangle slice):
 - How many corners does the cucumber have? (0)
o How many corners does the cucumber slice have? (4)
o How many “sides” (faces) does the cucumber have? (3)
o How many sides does the cucumber slice have? (4)

• Repeat with the other 3 solid-flat pairs

5. Now use the same criteria to differentiate among the 2-D shape slices.
 • Be sure to compare number of same-length sides, as well.

6. Compare the whole/carved veggie 3-D shapes to each other using the following:
 • Number of sides/ faces
 • Shape of the sides/ faces
 • Number of corners/ vertices

Tinker Time

With the review of the characteristics of different shapes, students should now be ready to reconstruct all of the shapes, 2-D and 3-D, already discussed.

7. Divide students into groups of 3-5. Place toothpicks and the “vertices” vegetables in the center of each group, and pass each student their own plate.
 • Go ahead and let them taste their vertices vegetables! Just make sure there’s enough left for building...

8. Have each student construct the 2-D shapes individually (square, rectangle, triangle, circle). You may need to demonstrate the first shape construction.
 • Note: The circle won’t be perfect... you can provide wire or string to connect in circle form to the building veggie, or have them make a star-like shape with one veggie at the center and various toothpicks stemming out into a circle.

9. Now have the students work together in their groups to build the following 3-D shapes, either using their already constructed 2-D shapes or starting from scratch:
 • Cube
 • Rectangular prism
 • Pyramid (either triangular or rectangular base)
 • Sphere-like model

10. Finally, set them free to tinker creatively and snack healthfully!
 • Be sure to compost your toothpicks and produce scraps!