Blueberry Horticulture Update

Zilfina Rubio Ames, PhD
Assistant Professor and Small Fruit Extension Specialist
University of Georgia - Tifton Campus

Help us by answering a survey!

Fertilization

- How much is needed?
- What is already in the soil?
- When does the plant need it?
- How is the fertilizer taken up by the plant? Mobility of nutrient.

Fertilization

- How is the fertilizer taken up by the plant?
- N, P, K, Mg are mobile within the plant
- $\mathrm{S}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Cu}, \mathrm{Zn}$ are immobile within the plant
- Very immobile Ca, B
- Xylem (dead tissue, nutrients move with water)
- Phloem (alive, move sugars out of the leaves)

Nutrient	Mobility in plant	Translocated in phloem	Translocated in xylem	Deficiency symptoms on?
Nitrogen (N)	High	V	V	Older leaves
Phosphorus (P)	High	V	V	Older leaves
Potassium (K)	High	V	V	Older leaves
Calcium (Ca)	Low		\checkmark	New growth
Magnesium (Mg)	High	V	V	Older leaves
Sulfur (S)	Low-Medium	\checkmark	V	Younger leaves
Boron (B)	Low	\checkmark	\checkmark	New growth
Copper (Cu)	Low	\checkmark	V	New growth
Iron (Fe)	Low	\checkmark	V	New growth
Manganese (Mn)	Low	\checkmark	V	New growth
Molybdenum (Mo)	Medium-High	V	\checkmark	Older leaves
Zinc (Zn)	Low	\checkmark	$\sqrt{ }$	New growth
Chlorine (Cl)	High	$\sqrt{ }$	\checkmark	Older leaves

Fertilization

- What is already in the soil?
- Nitrogen leach
- Phosphorus low mobility
- Calcium low mobility, (foliar application)?

Nutrient	Mobility in soil				
Nitrogen (N)	High $\left(\mathrm{NO}_{3}-\right)$; Medium $\left(\mathrm{NH}_{4}+\right)$				
Phosphorus (P)	Low				
Potassium (K)	Low-Medium	$	$	Calcium (Ca)	Low
:---	:---:				
Magnesium (Mg)	Medium				
Sulfur (S)	Low				
Boron (B)	Low				
Copper (Cu)	Low				
Iron (Fe)	Low-Medium				
Manganese (Mn)	Low				
Molybdenum (Mo)	High				
Zinc (Zn)					
Chlorine (Cl)					

Fertilization

Fertilization

Smith and Jacobs, $2019 \quad$ *Suggested Blueberry Fertilization Timings and Rates (uga.edu)

Fertilization

How much is needed?

- Phosphorus:
$>$ Less than 20 lb . apply 240-300 lb. of phosphate to increase the P in soil by 30 lb .
- Potassium: levels lower than 100 ppm (mg/kg). Check leaf samples.

Fertilization

Krewer and NeSmith, 1999

Sufficient or normal foliar concentrations of nutrients for rabbiteye

rabbiteye		
Nutrient	Georgia (\%)	Michigan (\%)
\mathbf{N}	$1.20-1.70$	$1.70-2.10$
\mathbf{P}	$0.08-0.17$	$0.08-0.40$
K	$0.28-0.60$	$0.40-0.65$

College of Agricultural \& Environmental Sciences UNIVERSITY OF GEORGIA

Fertilization

Source Strik, 2021 Oregon State University

College of Agricultural \& Environmental Sciences UNIVERSITY OF GEORGIA

Redesigning Blueberry Fertilization

Experimental Sites	$\begin{aligned} & \text { Farm 1: Nahunta - RE } \\ & -P \text { P } \end{aligned}$	Farm 2: Alma - SHB - F	Farm 3: Alma - RE - V	Farm 4: Hoboken - SHB - F
Location	Nahunta	Alma	Alma	Hoboken
Variety	Premier	Farthing	Vernon	Farthing
Year of establishment	2009	2018	2013	2014
Plant Density	Twelve by 3-foot row spacing: 1210 plants per acre.	Eleven by 2.5-foot row spacing: 1584 plants per acre.	Eleven by 4-foot row spacing: 990 plants per acre.	Twelve by 3-foot row spacing: 1210 plants per acre.
P fertilization during Year 1	3.4 g P per plant per year.	4.3 g P per plant per year.	4.3 g P per plant per year.	$7.9 \mathrm{~g} \mathrm{P} \mathrm{per} \mathrm{plant} \mathrm{per} \mathrm{year}$.
P fertilization during production (current)	33.8 g P per plant per year.	15.5 g P per plant per year.	16.5 g P per plant per year.	Granular 11.3 g P per plant per year. Fertigation 15.8 g P per plant per year. Total $27.1 \mathrm{~g} P$ per plant per year.
Reported Yield	$3500 \mathrm{lb} . / \mathrm{acre}$	$8500 \mathrm{lb} . /$ acre	$8000 \mathrm{lb} . /$ acre	$12000 \mathrm{lb} . /$ acre

Redesigning Blueberry Fertilization

Redesigning Blueberry Fertilization

Redesigning Blueberry Fertilization

Redesigning Blueberry Fertilization

Redesigning Blueberry Fertilization

Experimental Sites	Farm 1: Nahunta - RE-P	Farm 2: Alma - SHB - F	Farm 3: Alma - RE - V	Farm 4: Hoboken - SHB - F
Location	Nahunta	Alma	Alma	Hoboken
Variety	Premier	Farthing	Vernon	Farthing
Year of establishment	2009	2018	2013	2014
Plant Density	Twelve by 3-foot row spacing: 1210 plants per acre.	Eleven by 2.5-foot row spacing: 1584 plants per acre.	Eleven by 4-foot row spacing: 990 plants per acre.	Twelve by 3-foot row spacing: 1210 plants per acre.
P fertilization during Year 1	3.4 g P per plant per year.	4.3 g P per plant per year.	4.3 g P per plant per year.	7.9 g P per plant per year.
P fertilization during production (current)	$33.8 \mathrm{~g} \mathrm{P} \mathrm{per} \mathrm{plant} \mathrm{per} \mathrm{year}$.	$15.5 \mathrm{~g} \mathrm{P} \mathrm{per} \mathrm{plant} \mathrm{per} \mathrm{year}$.	$16.5 \mathrm{~g} \mathrm{P} \mathrm{per} \mathrm{plant} \mathrm{per} \mathrm{year}$.	Granular 11.3 g P per plant per year. Fertigation 15.8 g P per plant per year. Total 27.1 g P per plant per year.
Reported Yield	$3500 \mathrm{lb} . / \mathrm{acre}$	$8500 \mathrm{lb} . / \mathrm{acre}$	$8000 \mathrm{lb} . / \mathrm{acre}$	$12000 \mathrm{lb} . / \mathrm{acre}$

Fall Pruning

College of Agricultural \&
Environmental Sciences
UNIVERSITY OF GEORGIA

Fall Pruning

College of Agricultural \&
Environmental Sciences
UNIVERSITY OF GEORGIA

Fall Pruning

		Label
Description		
1	Hedge summer (after harvest)/ hand pruned fall	$\mathrm{Hg}(\mathrm{S}) \mathrm{HdP}(\mathrm{F})$
2	Hedge summer (after harvest) /tip in fall (commercial practice)	Hg (S,F)
3	No hedge after harvest/hand pruned fall	HdP (F)
4	Hand pruned summer (after harvest)/hand pruned in fall	Hd P(S,F)
5	No pruned/or hedge	NoHg HdP
6	Hedge after harvest and hand pruned(summer)/ hand prune in fall	Hg(S) $\mathrm{HdP}(\mathrm{S}, \mathrm{F})$

College of Agricultural \& Environmental Sciences UNIVERSITY OF GEORGIA

Fall Pruning - Yield

Fall Pruning - Berry Weight

Fall Pruning - Berry Size

College of Agricultural \& Environmental Sciences UNIVERSITY OF GEORGIA

Pruning-Yield and Berry Size

College of Agricultural \&
Environmental Sciences
UNIVERSITY OF GEORGIA

Pruning - Developmental Stages

Pruning - Fruit Quality

Ethephon Application on SHB

- Fall application of Ethephon to rabbiteye blueberry delayed blooming by 7-10 days depending on the temperature (Krewer et al., 2005).
- In recent years, blueberry growers have applied Ethephon to delay SHB bloom.
- There is limited information on the best rate of application, the timing of application, the effect of temperature on Ethephon effectiveness, and the mechanisms by which Ethephon delays blooming.

Ethephon Application on SHB

Ethephon Treatments

Trt	Treatment	Form Form	Form	Rate	Other Other	Appl	Appl	Amt Product	Rep				
No.	Name	Conc Unit	Type	Rate Unit	RateRate Unit	Timing	Code	to Measure	1	2	3	4	5
1	Ethephon Nonionic Surfactant	$\begin{aligned} & 2 \mathrm{LB} / \mathrm{G} \\ & \mathrm{AL} \\ & 100 \% \end{aligned}$	L L	200 ppm ai $0.25 \% \mathrm{v} / \mathrm{v}$	$\begin{array}{r} 0.83 \mathrm{ml} / \mathrm{l} \\ 2 \mathrm{pt} / \mathrm{a} \\ \hline \end{array}$	$\begin{aligned} & \text { POEMC A } \\ & \text { R } \\ & \text { POEMC A } \\ & R \quad \end{aligned}$		$2.502 \mathrm{~mL} / \mathrm{mx}$ $7.499 \mathrm{~mL} / \mathrm{mx}$	101	202	304	401	503
2	Ethephon Nonionic Surfactant	$\begin{aligned} & 2 \mathrm{LB} / \mathrm{G} \\ & \mathrm{AL} \\ & 100 \% \end{aligned}$	L L	400 ppm ai $0.25 \% \mathrm{v} / \mathrm{v}$	$\begin{array}{r} 1.67 \mathrm{ml} / \mathrm{l} \\ 2 \mathrm{pt} / \mathrm{a} \end{array}$	$\begin{aligned} & \text { POEMC A } \\ & \text { R } \\ & \text { POEMC A } \\ & \text { R } \end{aligned}$		$5.004 \mathrm{~mL} / \mathrm{mx}$ $7.499 \mathrm{~mL} / \mathrm{mx}$	102	204	302	404	501
3	Ethephon Nonionic Surfactant	$\begin{gathered} 2 \mathrm{LB} / \mathrm{G} \\ \mathrm{AL} \\ 100 \% \end{gathered}$	L L	800 ppm ai 0.25 \% v/v	$\begin{array}{r} 2.67 \mathrm{pt} / \mathrm{a} \\ 2 \mathrm{pt} / \mathrm{a} \end{array}$	$\begin{aligned} & \text { POEMC } \\ & \text { R } \\ & \text { POEMC } \\ & R \\ & \hline \end{aligned}$		$10.01 \mathrm{~mL} / \mathrm{mx}$ $7.499 \mathrm{~mL} / \mathrm{mx}$	103	201	303	402	504
4	Control								104	203	301	403	502

Percentages of flower buds development across all evaluated dates for 'Farthing'

Percentages of flower buds development across all evaluated dates for ‘Georgia Dawn’

Percentages of flower buds development across all evaluated dates for the 'Kee Crisp'

Differences of each growth stage in each evaluated date 'Farthing'										
Date	Treatment	s1	52	53	54	55	s6	57	58	s9
12/7/2022	T1	62.8 b	37.2 a	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12/7/2022	T2	43.9 a	56.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12/7/2022	тз	60.7 b	39.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12/7/2022	T4	57.8 ab	42.2 ab	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2/22/2023	T1	4.1	30.4	37.9	18.7	5.9	2.6	0.4	0.0	0.0
2/22/2023	T2	1.7	29.8	31.9	19.8	8.7	6.6	1.4	0.0	0.0
2/22/2023	T3	0.0	44.4	36.2	12.8	3.5	2.5	0.4	0.1	0.0
2/22/2023	T4	1.0	27.5	43.0	18.5	7.7	2.2	0.1	0.0	0.0
3/14/2023	${ }^{\text {T1 }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	93.3 b	6.7
3/14/2023	T2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	77.4 a	22.6
3/14/2023	т3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	84.2 a	15.8
3/14/2023	T4	0.0	0.0	0.0	0.0	0.0	0.0		93.6 b	6.4
3/27/2023	T1	0.0	0.0	0.0	0.0	0.0			40.5 a	59.5 ab
3/27/2023	T2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	45.2	54.8 b
3/27/2023	тз	0.0	0.0	0.0	0.0	0.0		0.0	46.1 a	53.9 a
3/27/2023	T4	0.0	0.0						51.4 b	48.6 b
*Means w							$\text { nt } p>0 \text {. }$			

*These tables show the growth stages where significant differences were identified between the analyzed dates as determined by the Kruskal Wallis test (based on medians).
*The tables are represented by the means (average of flower buds) for each treatment and date.
*As this experiment was analyzed based on medians, and we represent them as means, some differences may not correspond to the mean values.
*Red-colored letters indicates means that do not correspond to the median analysis.

Date	Treatment	S1	S2	S3	S4	S5		S6	S7	58	S9
1/11/2023	T1	97.0	3.0 ab	0.0	0.0	0.0		0.0	0.0	0.0	0.0
1/11/2023	T2	98.0	2.0 ab	0.0	0.0	0.0		0.0	0.0	0.0	0.0
1/11/2023	T3	99.6	0.4 a	0.0	0.0	0.0		0.0	0.0	0.0	0.0
1/11/2023	T4	93.8	5.4 b	0.7	0.0	0.1		0.0	0.0	0.0	0.0
1/19/2023	T1	31.4	62.3	5.9 b	0.4	0.0		0.0	0.0	0.0	0.0
1/19/2023	T2	29.2	68.9	1.8 a	0.0	0.0		0.0	0.0	0.0	0.0
1/19/2023	T3	31.9	67.0	1.1 a	0.0	0.0		0.0	D. 0	0.0	0.0
1/19/2023	T4	27.1	62.5	7.7 b	2.7	0.0		0.0	. 0	0.0	0.0
1/26/2023	T1	37.4	38.7	20.4 b	3.1 ab	0.4	ab	0.0	¢. 0	0.0	0.0
1/26/2023	T2	60.3	25.9 ab	11.0 a	1.9 a	0.8	ab	0.0	d. 2	0.0	0.0
1/26/2023	T3	52.0	35.5 b c	12.1 a	0.4 a	0.0		0.0	d. 0	0.0	0.0
1/26/2023	T4	57.8	18.8 a	10.9 a	8.1 b	4.4	b	0.0	01	0.0	0.0
2/1/2023	T1	15.6	56.9	18.8	5.5 a	3.2	ab	0.0	00	0.0	0.0
2/1/2023	T2	8.3	65.0	17.8	8.3 ab	0.5	a	0.0	00	0.0	0.0
2/1/2023	T3	18.7	58.1	18.3	4.7 a	0.1	a	0.0	00	0.0	0.0
2/1/2023	T4	14.5	49.6	15.9	13.0 b	6.9	b	0.0	d. 0	0.0	0.0
2/8/2023	T1	5.9	45.7	21.1	17.3	8.9	b	1.0	0.1	0.0	0.0
2/8/2023	T2	4.6	44.6	21.7	23.0	5.1		0.8	0.2	0.0	0.0
2/8/2023	T3	6.2	46.4	25.6	17.2	4.6		0.0	8.0	0.0	0.0
2/8/2023	T4	0.7	45.8	19.3	18.6	10.6	b	4.2	p. 7	0.0	0.0
2/15/2023	T1	0.0	14.2	21.6	32.7	19.9		9.5 ab	2.1 ab	0.0	0.0
2/15/2023	T2	0.0	18.5	24.0	29.9	19.9		6.7 a	0.5 a	0.5	0.0
2/15/2023	T3	1.1	13.0	27.1	37.5	14.2		6.4 a	0.7 ab	0.0	0.0
2/15/2023	T4	0.4	8.6	24.7	31.4	16.1		12.4 b	5.0 b	1.3	0.0
2/22/2023	T1	0.0	0.0	0.5	20.4 b	29.4		26.3	15.3 b	8.1 b	0.0
2/22/2023	T2	0.0	0.0	2.1	12.9 a	33.5		-0.0	16.7 b	4.9 ab	0.0
2/22/2023	T3	0.0	0.0	3.6	31.7 b	33.6		21.0	8.3 a	1.2 a	0.0
2/22/2023	T4	0.0	0.1	0.7	26.8 b	26.4		26.3	18.7 b	1.0 a	0.0
3/14/2023	T1	0.0	0.0	0.0	0.0	0.0		0.0	24.3 b	75.6	0.1
3/14/2023	T2	0.0	0.0	0.0	0.0	0.0		0.0	19.6 a	80.4	0.0
3/14/2023	T3	0.0	0.0	0.0	0.0	0.0		0.0	22.2 ab	77.8	0.0
3/14/2023	T4	0.0	0.0	0.0	0.0	0.0		0.0	19.9 a	80.1	0.0
3/27/2023	T1	0.0	0.0	0.0	0.0	0.0		0.0	0.0	24.5	75.5
3/27/2023	T2	0.0	0.0	0.0	0.0	0.0		0.0	0.0	19.6	80.4 b
3/27/2023	T3	0.0	0.0	0.0	0.0	0.0		0.0	0.0	22.2	77.8 ab
3/27/2023	T4	0.0	0.0	0.0	0.0	0.0		0.0	0.0	19.9	80.1 b

Higher mean percentage value
Second-highest mean percentage value
Third-highest mean percentage value
Lower mean percentage value

Date	Treatment	S1		S2	53	S4		55	56		57	58		S9
12/2/2022	T1	96.9	a	3.1	0.0	0.0		0.0	0.0		0.0	0.0		0.0
12/2/2022	T2	98.3	ab	1.7	0.0	0.0		0.0	0.0		0.0	0.0		0.0
12/2/2022	T3	97.9	a	2.1	0.0	0.0		0.0	0.0		0.0	0.0		0.0
12/2/2022	T4	97.1	b	2.9	0.0	0.0		0.0	0.0		0.0	0.0		0.0
12/7/2022	T1	48.1		51.9 a	0.0	0.0		0.0	0.0		0.0	0.0		0.0
12/7/2022	T2	42.2		57.8 b c	0.0	0.0		0.0	0.0		0.0	0.0		0.0
12/7/2022	т3	42.8		57.2 ab	0.0	0.0		0.0	0.0		0.0	0.0		0.0
12/7/2022	T4	35.4		64.6 c	0.0	0.0		0.0	0.0		0.0	0.0		0.0
12/14/2022	T1	95.7	a	4.3	0.0	0.0		0.0	0.0		0.0	0.0		0.0
12/14/2022	T2	99.2	a	0.8	0.0	0.0		0.0	0.0		0.0	0.0		0.0
12/14/2022	T3	98.5	a	1.5	0.0	0.0		0.0	0.0		0.0	0.0		0.0
12/14/2022	T4	97.5	b	2.5	0.0	0.0		0.0	0.0		0.0	0.0		0.0
1/11/2023	${ }^{1} 1$	98.2	a	1.8	0.0	0.0		0.0	0.0		0.0	0.0		0.0
1/11/2023	T2	98.9	a	1.1	0.0	0.0		0.0	0.0		0.0	0.0		0.0
1/11/2023	т3	98.7	a	1.3	0.0	0.0		0.0	0.0		0.0	0.0		0.0
1/11/2023	T4	99.4	b	0.6	0.0	0.0		0.0	0.0		0.0	0.0		0.0
1/19/2023	T1	32.2		61.4 a	6.4	0.0		0.0	0.0		0.0	0.0		0.0
1/19/2023	T2	24.8		73.1 b	2.1	0.0		0.0	0.0		0.0	0.0		0.0
1/19/2023	т3	43.8		54.2 a	1.9	0.0		0.0	0.0		0.0	0.0		0.0
1/19/2023	T4	33.9		65.1 b	0.9	0.0		0.0	0.0		0.0	0.0		0.0
1/26/2023	T1	53.9		31.7	14.4 ab	0.0		0.0	0.0		0.0	0.0		0.0
1/26/2023	T2	52.2		28.3	19.5 b	0.0		0.0	0.0		0.0	0.0		0.0
1/26/2023	T3	54.9		34.9	10.1 a	0.2		0.0	0.0		0.0	0.0		0.0
1/26/2023	T4	47.1		30.8	22.1 b	0.0		0.0	0.0		0.0	0.0		0.0
2/1/2023	T1	21.8		58.3 a	16.4 ab	3.5	ab	0.0	0.0		0.0	0.0		0.0
2/1/2023	T2	12.3		62.4 b	25.3 b c	0.0	a	0.0	0.0		0.0	0.0		0.0
2/1/2023	T3	25.1		59.8 a	14.9 a	0.2	a	0.0	0.0		0.0	0.0		0.0
2/1/2023	T4	11.6		55.0 b	24.9	8.4	b	0.0	0.0		0.0	0.0		0.0
2/8/2023	T1	3.5		58.4	24.5 ab	12.8	a	0.8	0.0		0.0	0.0		0.0
2/8/2023	T2	2.4		59.7	26.5 b c	11.4	a	0.0	0.0		0.0	0.0		0.0
2/8/2023	T3	10.1		61.3	22.0 a	6.6	a	0.0	0.0		0.0	0.0		0.0
2/8/2023	T4	1.2		43.8	33.0	22.0	b	0.0	0.0		0.0	0.0		0.0
2/15/2023	T1	0.0		22.0 ab	36.4	26.6	ab	14.0 a	1.1		0.0	0.0		0.0
2/15/2023	T2	0.7		28.7 b c	27.8	34.0	b	8.8 a	0.0		0.0	0.0		0.0
2/15/2023	т3	1.4		37.6 c	30.1	21.5	a	8.9 a			0.0	0.0		0.0
2/15/2023	T4	0.0		15.6 a	31.1	28.4		23.6	1.2		0.0	0.0		0.0
2/22/2023	T1	0.0		2.6	19.5	31.1	a	31.3	14.9	a	0.6	0.0		0.0
2/22/2023	T2	0.0		4.5	16.9	40.0	b	26.6	12.0	a	0.0	0.0		0.0
2/22/2023	T3	0.0		5.1	30.0	30.5		24.0 a	10.3	a	0.0	0.2		0.0
2/22/2023	T4	0.0		1.7	12.9	31.0		29.6	24.4		0.4	0.0		0.0
3/27/2023	T1	0.0		0.0	0.0	0.0		0.0			0.0	67.9	a	32.1
3/27/2023	T2	0.0		0.0	0.0	0.0		0.0	0.0		0.0	72.1	b	27.9
3/27/2023	T3	0.0		0.0	0.0	0.0		0.0	0.0		0.0	70.0	a	30.0
3/27/2023	T4	0.0		0.0	0.0	0.0		0.0	0.0		0.0	81.5	b	18.5

Higher mean percentage value
Second-highest mean percentage value
Third-highest mean percentage value
Lower mean percentage value

*Means with a common letter are not significantly different (p >0.05)
*These tables show the growth stages where significant differences were identified between the analyzed dates as determined by the Kruskal Wallis test (based on medians).
*The tables are represented by the means (average of flower buds) for each treatment and date.
*As this experiment was analyzed based on medians, and we represent them as means, some differences may not correspond to the mean values.
*Red-colored letters indicates means that do not correspond to the median analysis.

GENERAL REMARKS

- Reducing P fertilization could be a possibility to reduce fertilizer cost.
- Pruning increased berry size without affecting yield, which can lead to premium prices.
- Ethephon delays bloom for 'Georgia Dawn.'

TOPICS OF RESEARCH

- Calcium and Boron: relation with fruit quality and "black bud"
- Sap analysis
- Nutrient deficiencies
- Aluminum toxicity
- New amendments

Small Fruit Program (uga.edu)

 Thank you!