

BLUEBERRY UPDATE MEETING – BACON COUNTY

Blueberry Disease Management: Fungicide Resistance Findings And Tools for Managing Fruit Rots

Dr. Jonathan Oliver Fruit Pathologist and Extension Specialist University of Georgia January 10th, 2024

Blueberries affected by Anthracnose Fruit Rot

Outline

• Blueberry Fruit Rots & New Fungicide Resistance Findings

• New Predictive Tool for Anthracnose

Blueberry Disease Management Resources

Outline

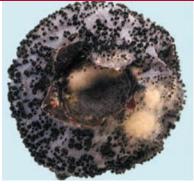
Blueberry Fruit Rots & New Fungicide Resistance Findings

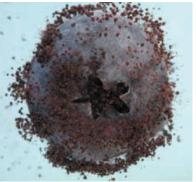
• New Predictive Tool for Anthracnose

Blueberry Disease Management Resources

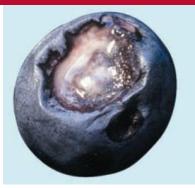
Fruit Rots

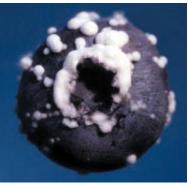
- Fruit rotting pathogens can infect blueberries at diverse stages of berry development – including postharvest – but eventually lead to a rot of ripe fruit.
- Field infections often remain latent until the berry ripens (these can be difficult to detect until it is too late).
- The most devastating fruit rot pathogens are those that can be readily transferred to healthy berries in packing lines or within clamshells to induce rot.
 - "One bad apple blueberry can spoil the whole barrel-clamshell"


sambrailo.com


Department of Plant Pathology

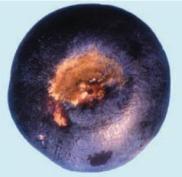
FRUIT ROT DISEASES


Pestalotia Rot


Aspergillus Rot

Phomopsis Rot

Yeast Rot


White Mold

Anthracnose Rot

Rhizopus Rot

Epicoccum Rot

Alternaria Rot

Hainesia Rot

Mummy Berry

Gray Mold

Fruit Rot Pathogens

- Important fruit rotting pathogens of blueberry include:
 - Colletotrichum spp. Anthracnose Rot (aka "Ripe Rot")
 - Alternaria tenuissima Alternaria Leaf Spot & Fruit Rot
 - Botrytis cinerea Botrytis Flower Blight and Fruit Rot (aka "Gray Mold")

All three of these diseases can cause significant losses preand postharvest on blueberry

Colletotrichum spp.

Anthracnose Rot

Alternaria tenuissima

Alternaria Rot

Botrytis cinerea

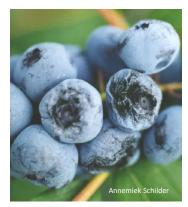
Gray Mold

Anthracnose Fruit Rot (Ripe Rot)

- Anthracnose fruit rot is caused by two different fungi: *Colletotrichum gloeosporioides* and *C. acutatum*
- Fruit infections begin at bloom, remain latent until ripening.
 - Can be major issue postharvest
- Warm, wet weather during bloom and just before harvest favors disease development.

Shriveling Ripe berries

Sporulation on infected berry


Orange spore masses on berries

Alternaria Fruit Rot

- Caused by Alternaria tenuissima
- Symptoms develop when fruit ripen: infected fruit become leaky and may be covered in grey-green fungal mycelium
- This fungus can also cause a (minor) leaf spot on blueberry
- Cool, wet conditions favor disease development and infection of berries in the field

Ripe berries shriveling and sporulating on bush

Grey-green mycelium

Leaf spots

Botrytis Flower Blight and Fruit Rot

- Disease caused by the fungus *Botrytis cinerea*
- Symptoms include blights of blossoms, twigs, and young leaves as well as a rot of fruit (aka "Gray Mold")
 - Blossom blight causes the most losses

Blighted Blossoms

Masses of conidia on rotting fruit OCCUIS NEAL

 Particularly problematic when wet weather occurs near bloom or when freeze-damaged tissues are present

FRUIT ROT DISEASES

Chemical Control of Fruit Rot Diseases

Recommendations below are based on the 2023 SE Regional Blueberry Integrated Management Guide

Trade Name	Active Ingredient		Anthracnose Ripe Rot	Alternaria Rot	Botrytis Gray Mold
Quash	metconazole	3	+++++	+++++	<i>,</i>
Quilt Xcel	propiconazole azoxystrobin	3 11	+++++	+++++	
Abound	azoxystrobin	11	+++++	+++++	
Pristine	pyraclostrobin boscalid	11 7	+++++	++++	++++
Switch	cyprodinil fludioxonil	9 12	+++++	+++++	+++++
Miravis Prime	pydiflumetofen fludioxonil	7 12	+++++		
Elevate	fenhexamid	17			+++++
Omega	fluazinam	29	+++	+++	++
Ziram	ziram	M3	++	++	++
Captan	captan	M4	+++	+++	++

Fungicide Resistance

- Several important fruit rot pathogens are known to rapidly develop fungicide resistance.
- Anthracnose resistance to QoI fungicides (Abound and Pristine) has been documented previously in Florida, and in 2019 three isolates of *C. gloeosporioides* highly resistant to Pristine were isolated from blueberries near Blackshear, GA.
- These isolates possessed a mutation known to confer resistance in *Colletotrichum sp.* to all QoI fungicides.

2021 & 2022 Fruit Rot Survey

- A blueberry fruit rot survey was conducted during the 2021 and 2022 growing seasons to assess the prevalence of fungi on blueberry fruit and screen fruit rot fungi for fungicide resistance.
- Symptomatic SHB and RE fruit samples were collected from 46 sites in 6 major blueberry-producing counties.
- Colletotrichum and Alternaria were the most prevalent species among SHB sites; Botrytis was more prevalent on RE sites.

fruit rots



Fungicide Resistance Screening

- Alternaria, Botrytis, and Colletotrichum blueberry isolates were screened for resistance to common fungicides.
- 46 Alternaria isolates (from 16 sites in 4 counties), 117 Botrytis isolates (8 sites in 3 counties), and 50 isolates of Colletotrichum (16 sites in 4 counties) were screened.
- A mycelial growth inhibition assay and genetic testing were used for isolate screening.

Mycelial Growth Inhibition Assay; Fungicide Resistant Isolate Shown on Bottom

FUNGICIDE RESISTANCE SCREEN

Fungicide Resistance Screening

Fungicide (trade name)			Screening Results				
	MoA	Alternaria	Botrytis	Colletotrichum			
pyraclostrobin (Pristine)	11	10 of 46 (22%)	12 of 117 (10%)	9 of 50 (18%)			
boscalid (Pristine)	7	21 of 46 (46%)	10 of 117 (9%)	All Resistant			
pydiflumetofen (Miravis Prime)	7	All Sensitive	not tested	All Resistant			
fludioxonil (Switch & Miravis Prime)	12	All Sensitive	7 of 117 (6%)	18 of 50 (36%)			
cyprodinil (Switch)	9	All Sensitive	30 of 117 (26%)	All Resistant			
fluazinam (Omega)	29	All Sensitive	All Sensitive	All Sensitive			
fenhexamid (Elevate)	17	not tested	7 of 117 (6%)	not tested			
metconazole (Quash)	3	All Sensitive	not tested	All Sensitive			
Red = # (%) of fungicide resistant is	olates	Orange = Mod	erate Resistance	Green = Sensitive			

<u>Note</u>: Colletotrichum isolates were insensitive to boscalid, pydiflumetofen, & cyprodinil.
6/46 (13%) Alternaria isolates [3 of 16 locations] were resistant to BOTH components of Pristine.
5/117 (4%) Botrytis isolates [4 of 8 locations] were resistant to BOTH components of Switch.
9/50 (18%) Colletotrichum isolates [5 of 16 locations] were resistant BOTH components of Pristine.
18/50 (36%) Colletotrichum isolates [10 of 16 locations] were resistant to ALL components of Switch and Miravis Prime.

8/50 (14%) Colletotrichum isolates [4 locations] were resistant to Pristine, Switch, & Miravis Prime!

Fungicide Resistance Conclusions

- Alternaria isolates w/resistance to Qol-fungicides and boscalid, and Botrytis & Colletotrichum isolates w/multiple fungicide resistances have been ID'd in Georgia blueberries.
- To ensure that fungicides remain effective against fruit rots, it is more essential than ever to utilize good fungicide resistance management practices. (Rotate available MoAs; tank mix w/multisite fungicides [Captan or Ziram])
- No resistance to fluazinam (Omega) was observed in any tested isolate; as such, Omega may be a good rotation option likely best utilized around petal fall (30 day PHI).
 - All *Alternaria* and *Colletotrichum* isolates were also sensitive to Quash.

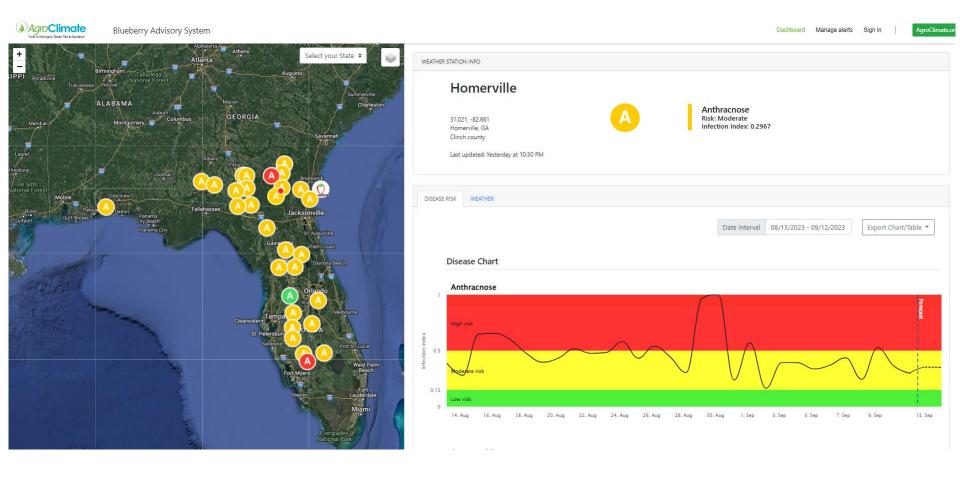
Outline

• Blueberry Fruit Rots & New Fungicide Resistance Findings

• New Predictive Tool for Anthracnose

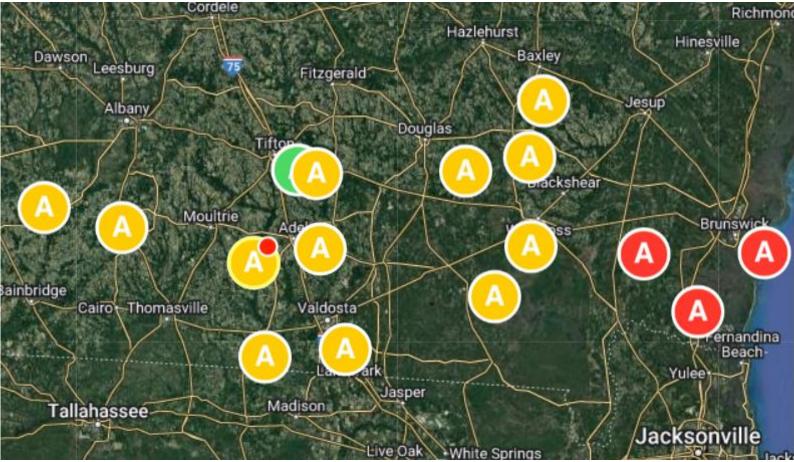
Blueberry Disease Management Resources

Predictive Tool for Anthracnose


- In March 2022, 16 UGA weather stations in SE Georgia were incorporated into the **Blueberry Advisory System** (BAS) through AgroClimate (<u>http://agroclimate.org/</u>).
- BAS was adapted from the Strawberry Advisory System (SAS) to **predict the risk of infection** of blueberry with anthracnose (*Colletotrichum* spp.) based on weather parameters (primarily leaf wetness and temperature).
- Freely accessible through AgroClimate. By creating a free account, subscribers can receive anthracnose risk alerts based on their nearest/chosen weather station. New BAS App released in November 2023 (App Store & GooglePlay).

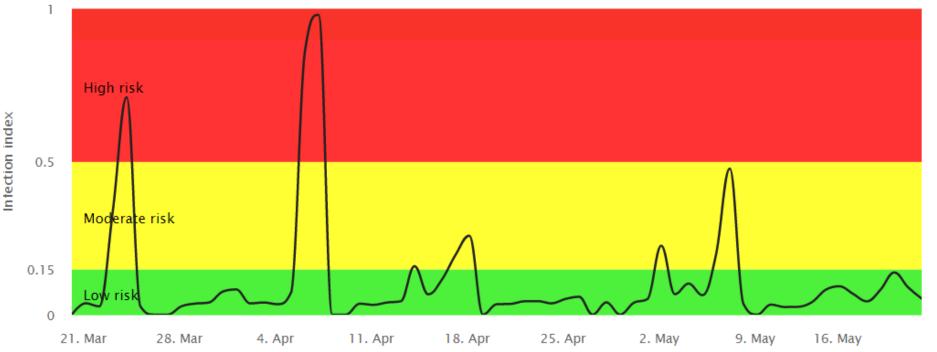
Predictive Tool for Anthracnose

http://cloud.agroclimate.org/tools/bas/dashboard/disease



Department of Plant Pathology

BLUEBERRY ADVISORY SYSTEM

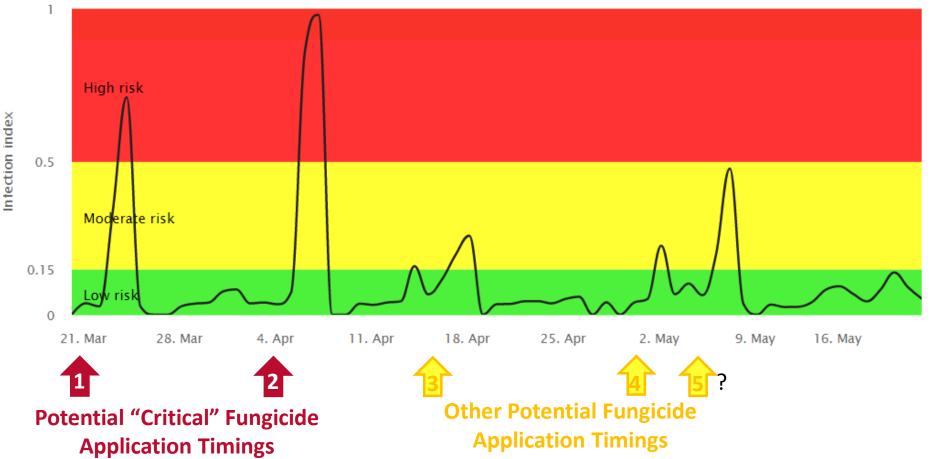

• Red circles indicate high risk, yellow circles indicate medium risk, and green indicate a low risk of NEW infections with anthracnose occurring at this time at a specified location.

Department of Plant Pathology

Anthracnose

 The model was field tested by UF over three field seasons. They recommend fungicide applications within 48 hours* of a high/medium risk event.

*Ideally, fungicide applications should be made PRIOR to a high/medium risk event for optimum efficacy.



Department of Plant Pathology

Anthracnose

BLUEBERRY ADVISORY SYSTEM

<u>Note:</u> For illustration purposes only. Other factors, including past application history and plant developmental stage should also be considered before making spray decisions. Refer to specific fungicide labels for minimum retreatment interval and other information. Remember, the label is the law.

Utilizing Predictive Tools

- Predictive models, such as the Blueberry Advisory System, are useful for assessing risk of infection with Anthracnose
- Model information will likely be most useful for:
 - Extending spray intervals in some years (versus a standard calendar-based approach)
 - <u>Calendar</u>: Spray for Anthracnose every 10-14 days from bloom to harvest
 - <u>Model</u>: Delay additional sprays until moderate/high risk conditions reoccur
 - *Targeting* the use of the most effective chemistries to the highest infection risk periods
 - <u>Current Practice</u>: Use the most effective chemistries whenever possible
 - <u>Model Informed</u>: Use "Excellent" or "Very Good" materials (Switch/Miravis Prime) when high/moderate risk conditions occur and use "Good" or "Fair" materials alone (Omega/Captan/Ziram) during moderate/low risk conditions

Utilizing Predictive Tools

A couple caveats:

- This model does not "make spray decisions". Rather, it provides information to allow growers to make more informed decisions regarding anthracnose management.
 Sometimes conditions at the nearest weather station will differ from on-farm conditions!
- Prior to 2023, this system had been validated in Florida only. During the 2023 growing season, we conducted field trials using this system with the hopes of understanding how best to utilize this system for anthracnose fruit rot management on SHB and rabbiteye in Georgia.

2023 Blueberry Advisory System Trials

Methods:

- At 7 sites (6 commercial blueberry farms and one research farm), fruit rot trials were conducted during 2023.
- Sites chosen, in part, due to their proximity to UGA weather stations.
- At four sites, SHB 'Farthing' was used and at the other three sites RE 'Brightwell' was used.
- At the trial conclusion, fruit was collected and evaluated for rots (including anthracnose ripe rot) immediately prior to the first grower harvest.

2023 Blueberry Advisory System Trials

Methods:

- Two spray schedules ('Standard' [based on plant development] and 'BAS' [based on the Blueberry Advisory System]) were compared to an untreated control.
- For the BAS program, "Excellent" fungicides (Switch/ Miravis Prime) were used for high risk events and "Good" materials (Omega/Captan) were used for moderate events.
- The standard program consisted of 5 sprays:

Treatment/Timings							
10% Bloom Petal Fall 10 days after Petal Fall 3 weeks after Petal Fall Pre-harvest							
Switch	Omega	Miravis Prime	Captan	Miravis Prime			

2023 Blueberry Advisory System Trials

- Hypotheses: [things we thought might happen]
- Total number of sprays would be reduced using the BAS program ("extending spray intervals") while providing equivalent control to the standard program.
- The BAS system would likely recommend more applications for rabbiteye blueberries vs. SHB (hotter and wetter during rabbiteye season)

2023 Blueberry Advisory System Trials

Results:

• At all sites, both spray schedules ('Standard' and 'BAS') resulted in numerically less anthracnose fruit rot and all rots versus the untreated control.

		Fruit Rot Incidence (%)						
		Souther	rn Highbu	ish 'Farthing'	,		Rabbiteye 'B	rightwell
		Research Farm	Alma	Homerville	Nahunta	Alma	Homerville	Nahunta
	Untreated	2.7	1.5	2.7	7.2	0.6	1.2	26.8
Anthracnose Fruit Rot	: Standard	0	0.2*	0.2*	1.1	0	0.4	10.2
	BAS	0.2	0*	0*	1.2	0	0	1.6*
	Untreated	5.2	0.9	0.4	1.6	3.2	0.8	5.2
Alternaria Fruit Rot	Standard	0.2*	0.4	0	0.6	0.2*	0.7	3.8
	BAS	0.5*	0.4	0.4	0.2*	1.6	0.6	0.2
All Rots	Untreated	6.2	2.7	3.4	9.2	6.2	1.6	28.6
	Standard	0.4*	0.9*	0.2	1.7*	0.8*	0.7	10.6
	BAS	1*	0.6*	0.8	1.4*	2.2*	0.6	2.4*

*indicates significantly less than the untreated control according to the least significant difference test (LSD) (α =0.05).

Orange/Yellow/Light Green = Less Disease

Green = No Disease

Est.

2023 Blueberry Advisory System Trials

Results:

- Using the BAS program <u>did not</u> result in fewer sprays per season versus the standard schedule.
- However, utilizing Captan or Omega ("Good" efficacy) during "Moderate" risk events often resulted in the BAS program being cheaper overall.

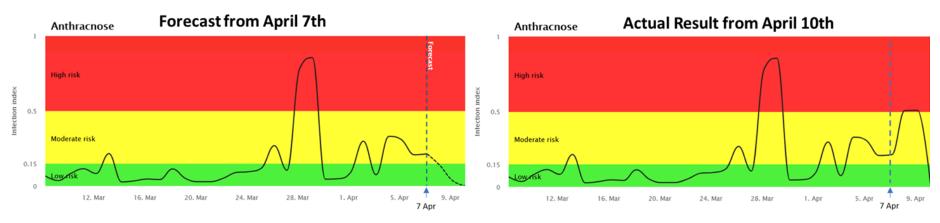
				2011
	Location	Program	Sprays	\$/Acre
	Research Farm	Standard	5	\$262
า	SHB	BAS	5	\$184
		Standard	5	\$262
	Alma SHB	BAS	5	\$184
	Homerville SHB	Standard	5	\$262
		BAS	6	\$312
	Nahunta SHB	Standard	5	\$262
		BAS	5	\$262
	Alma RE	Standard	5	\$262
-		BAS	5	\$184
	Homerville RE	Standard	5	\$262
ng	Homerville RE	BAS	5	\$204
-	Nahunta RE	Standard	5	\$262
		BAS	6	\$216

2023 Blueberry Advisory System Trials

Results:

 Nearly twice as many "Moderate" and "High" risk events were recorded during the RE season vs. SHB season; however, since sprays were never made to the same plants
 <7 days apart, overall spray numbers were comparable for RE vs. SHB trials.

	Locations									
		H	Homerville Alma N							1
	Time Period	Moderate	High	Mod+High	Moderate	High	Mod+High	Moderate	High	Mod+High
	Bloom	3	3	6	0	4	4	2	2	4
SHB	Harvest	15	2	17	13	0	13	16	0	16
	Season	29	7	36	18	4	22	21	3	24
	Bloom	3	0	3	3	0	3	0	0	0
RE	Harvest	21	9	30	17	4	21	25	4	29
	Season	39	13	52	28	6	42	42	5	47



2023 Blueberry Advisory System Trials

Results:

• The risk forecast provided by BAS was not accurate enough at predicting future risk events to use for spray scheduling

Homerville Blueberry Advisory System Results (April 7th and April 10th)

Blueberry Advisory System Conclusions

- Georgia blueberry growers can utilize BAS for timing sprays for anthracnose fruit rot control.
- Utilizing BAS to time sprays <u>did not</u> result in fewer sprays being made versus the standard program in 2023.
 - In drier years [\downarrow high/moderate events], fewer sprays may be recommended.
- Using "good" materials (Omega/Captan) during moderate risk events provided equivalent control w/lower costs.
- A minimum retreatment threshold (ours was 7 days), may be necessary to avoid excessive sprays with BAS.
- The forecast function of BAS has major shortcomings.

Outline

• Blueberry Fruit Rots & New Fungicide Resistance Findings

• New Predictive Tool for Anthracnose

Blueberry Disease Management Resources

SOUTHEASTERN BLUEBERRY IPM GUIDE

Southeast Regional Blueberry Guide

Southern Region Small Fruit Consortium

Home	SRSFC Activities ~	Crops ~	News ~	Regional Experts	IPM/Production Guides	Agent Training	Weather
					• • • • • • • • • • • • • • • • • • • •		

23

Southeast Regional Guides

<u>2023 Blueberry IPM Guide</u>

- 2023 Bunch Grape IPM Guide
- 2023 Caneberry IPM Guide
- 2023 Muscadine Grape IPM Guide
- 2023 Organic Blueberry Pest Management
- <u>2023 Strawberry Plasticulture Production</u>

Southeast Regional Blueberry INTEGRATED PEST MANAGEMENT GUIDE

Available at: www.smallfruits.org

IPM/Production Guides

BLUEBERRY IPM GUIDE

Seasonal 'at a glance' fungicidal spray schedule options for blueberry

Developmental	Late Dormant	Green tip	Bloom	Petal Fall	10 to 14 Days after	20 to 24 Days after	Pre-Harvest ^g	After Harvest
Stage	Late Dormant	oreen up	(2-3 applications) ^b		Petal Fall	Petal Fall	110-11al vest	Alter Harvest
Disease	Exobasidium	Twig Blight	Alternaria and	Alternaria and	Alternaria and	Alternaria and	Alternaria and	Anthracnose Leaf
(Fungicides)	(Lime Sulfur,	(Pristine or Indar)	Ripe Rot	Ripe Rot	Ripe Rot (Abound,	Ripe Rot (Abound,	Ripe Rot (Abound,	Spot
(Fuligicides)	Sulforix or Lime	(Filsule of fildal)	(Abound, Pristine,	(Abound, Pristine,	Pristine, Switch,	Pristine, Switch,	Pristine, Switch,	(Abound, Pristine,
	Sulfur Ultra) ^a			Switch, Captan, Miravis	Captan, Miravis	Captan, Miravis	Captan, Miravis	Switch, Aliette,
	Sullui Olua)		Prime, Omega, or	Prime, Omega, or	Prime, Omega, or	Prime, Omega, or	Prime)	ProPhyt, K-Phite,
			Ouilt Xcel) ^c	Ouilt Xcel)	Quilt Xcel)	Quilt Xcel)	T TIME)	Quash, Quilt Xcel,
			Quint ricci)	Quint / teor)	Quint Meer)	Quint ricci)		Indar, or Bravo)
								induit, of Diuvo)
		Mummy Berry and	Mummy Berry and	Septoria Leaf Spot	Septoria Leaf Spot	Septoria Leaf Spot		Septoria Leaf Spot
		Twig Blight (Pristine,	Twig Blight	(Abound, Pristine, Switch,	(Abound, Pristine,	(Abound, Pristine,		(Abound, Pristine, Switch,
		Indar, Tilt, Quash,	(Pristine, Indar ^d +	Aliette, ProPhyt, K-Phite,	Switch, Aliette,	Switch, Aliette,		Aliette, ProPhyt, K-Phite,
		Proline, Quilt Xcel,	Captan, Tilt, Quash,	Quash, Quilt Xcel, Tilt, Indar		ProPhyt, K-Phite,		Quash, Quilt Xcel, Tilt,
		Cevya, or	Proline, Quilt Xcel,	or Proline) ^e	Quash, Quilt Xcel, Tilt,	Quash, Quilt Xcel, Tilt,		Indar, Proline, or Bravo)e
		Luna Tranquility)	Cevya, or Luna		Indar or Proline)e	Indar or Proline)e		
			Tranquility)					
			For serious Botrytis	Rust	Rust			Rust
				(Proline, Quash, Tilt, Indar,	(Proline, Quash, Tilt,			(Proline, Quash, Tilt,
			Pristine, or Switch)	or Quilt Xcel) ^f	Indar or Quilt Xcel)f			Indar, Quilt Xcel, or
			, ,					Bravo) ^f
	Phytophthora			Phytophthora				Phytophthora
	Root Rot (Ridomil,			Root Rot				Root Rot
	Orondis Gold.			(Ridomil, Orondis				(Ridomil, Orondis
	Orondis Gold 200)			Gold, Orondis				Gold, Orondis
	,			Gold 200, Aliette,				Gold 200, Aliette, ProPhyt,
				ProPhyt, or K-Phite)				or K-Phite)
				- · /				, ,
		If Exobasidium has	If Exobasidium has	If Exobasidium has	If Exobasidium has	If Exobasidium has		
		been a problem, add	been a problem, add	been a problem, add Captan	been a problem, add	been a problem, add		
		Captan	Captan		Captan	Captan		

^aExobasidium is not specifically on the label. However, when applied for other diseases, suppression of Exobasidium has been observed.

^bBloom times vary, due to varietal differences and the environment, and as a result the number of applications may vary from 1-3. Bloom sprays should provide protection against the primary pathogens of blooms for the entire bloom period. ^cMany of the fungicides which are registered for rot control may also have activity against twig dieback organisms, such as Phomopsis species.

^dWhen using Indar during bloom, always tank-mix with Captan. Captan provides some control of mummy berry, twig blight, Botrytis, and fruit rots. However, it is mainly of value for resistance management and to prevent increased rots due to use of Indar.

^eSeptoria leaf spot is generally controlled with 2-4 fungicide applications. This disease is more problematic on highbush blueberry varieties, but some rabbiteye varieties may experience premature defoliation from Septoria as well. For leaf spot, Aliette and other phosphites (ProPhyt, K-Phite, etc.) are best utilized after harvest, since they are not as efficacious against the fruit rots, and they serve as a resistance management tool.

^fRust is problematic on some blueberry varieties, especially in far southern areas such as south Georgia, and it can result in complete, premature defoliation on susceptible varieties. Scout for rust in mid to late July. Applications of fungicides (2-3) from August to mid-September will generally result in good rust management. Some varieties may require yearly rust control.

gin wet years, pre-harvest and post-harvest rots may be a potential problem. Under these conditions, 1-2 applications of a pre-harvest material may be necessary for rot control.

BLUEBERRY MYIPM APP

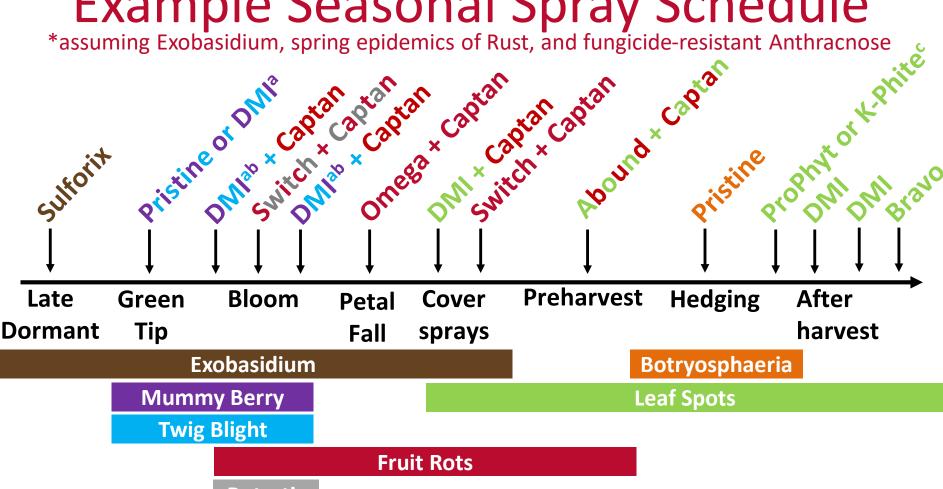
MyIPM App

MyIPM App

- Contains basic disease (and pest) info for Apple,
 Blackberry, Blueberry,
 Cherry, Cranberry, Grape,
 Peach, Pear, & Strawberry
- Includes management and pesticide efficacy info
- Available for free download

MyIPM

Thank you for your attention!



SOUTHEASTERN BLUEBERRY SEASONAL SPRAY SCHEDULE

Example Seasonal Spray Schedule

*assuming Exobasidium, spring epidemics of Rust, and fungicide-resistant Anthracnose

Botrytis

Always follow all label rates & instructions.

^aDMIs include Indar, Tilt/generics, Quash, and Proline.

^bElevate can be added for additional Botrytis control, if resistance is not an issue.

^cPhosphonate fungicides (ProPhyt, K-Phite, Reliant) are also effective for Phytophthora control