Brooks County Extension- Community Connection

Brooks County Extension

VOLUME 2, ISSUE 1
WINTER 2016

You can plant or harvest something from your garden almost all year. The two major planting periods, however, are spring (March to May) and fall (mid-July to September). The spring plantings are harvested in June and July, while the fall plantings are harvested from October to December. January and February are prime times for looking at seed catalogs, dreaming of warm-spring days, preparing garden plots, and getting ready for a productive season.

Important Note: The monthly recommendations—especially the spring and fall planting dates—are for the typical and month in middle Georgia. To use this calendar, consider middle Georgia as a belt across the state from Columbus through Macon to Augusta. Spring planting dates can be as much as two to three weeks earlier in extreme south Georgia, and fall planting dates can also be as much as two weeks later. In north Georgia, the spring planting dates are from one to three weeks later as you progress northward through the mountain counties; fall planting dates are about two weeks earlier.

The following recommendations are based on long-term average dates of the last killing frost in the spring and first killing frost in the fall. Every year does not conform to the "averages," so you should use your own judgment about advancing or delaying the time for each job, depending on weather conditions.

This calendar is prepared mainly as a reminder and guide for planning your garden plots, and getting ready for each 1/10 acre to be planted (if you did not do so in the fall). Take soil samples if you have not already done so, and take them to your county extension office for analysis.

• Buy enough quality seed for two or three plantings to lengthen the season of production.
• Take soil samples if you have not already done so, and take them to your county extension office for analysis.
• Apply manure or compost and plow it under if you did not do so in the fall.
• Apply lime, sulfur and fertilizer according to the soil test results and vegetable requirements. Buy 100 pounds of fertilizer for each 1/10 acre to be planted. If manure is not available, buy at least half again more. Use 5-10-10 or 5-12-12 analysis, depending on soil test and vegetable requirements.
• Get plant beds or seed boxes ready for growing plants such as tomatoes, peppers and eggplants. Have beds ready for planting in early February.
• Check on your compost pile and make sure it is ready for use in the spring.
• Go by your county extension office and get copies of Georgia Extension gardening publications.

February
• Plants need boxes. Peppers and eggplants will take eight weeks to grow from seed to transplant size, while tomatoes will take six weeks. When the seedlings form their third set of true leaves, transplant them to individual containers.
• Prepare beds for planting—winter and early spring plantings being on a ridge (raised bed) for better drainage and earlier soil warm-up.
• If nematodes were a problem last year, make plans to plant another crop less susceptible to nematodes in the infested area.
• Make early plantings of your choice from the following: carrots, collards, lettuce, mustard, English pea, Irish potato, radishes, spinach and turnips. (See ‘Home Gardening, Extension Circular 1170.’)
• Check back with your county extension agent for additional information at 229-263-4103.

INSIDE THIS ISSUE:
Vegetable Calendar
Fasci Truffles
Tree Root
Hower Mulch
4-H Club

January
• Make a garden plan. Plan the garden to include various vitamin groups.
• Consider planting a few new varieties along with the old favorites. (See Vegetable Gardening in Georgia, Circular 1170.)
• Plant the amount of each vegetable to be planted, including enough to can and freeze. Allow about 1/10 acre of garden space for each member of the family.

(Ask your county Extension agent about So Easy to Preserve.)
• Buy enough quality seed for two or three plantings to lengthen the season of production.
• Take soil samples if you have not already done so, and take them to your county extension office for analysis.
• Apply manure or compost and plow it under if you did not do so in the fall.
• Apply lime, sulfur and fertilizer according to the soil test results and vegetable requirements. Buy 100 pounds of fertilizer for each 1/10 acre to be planted. If manure is not available, buy at least half again more. Use 5-10-10 or 5-12-12 analysis, depending on soil test and vegetable requirements.

Replenish the mulch on strawberries.

Make early plantings of your choice from the following: carrots, collards, lettuce, mustard, English pea, Irish potato, radishes, spinach and turnips. (See ‘Home Gardening, Extension Circular 1170.’)

Early-plant ed crops may need a nitrogen side-dressing, particularly if the soil is cool. Place the fertilizer several inches to the side of the plants and water it in. A little fertilizer throughout the growing period is better than too much at one time.

Before using them in the garden, harden-off transplants—place them in your container’s outdoor in a sheltered place a few days ahead of planting them.

Get rows ready for “warm-season” vegetables to be planted during the last week of March or first week of April as weather permits.

We will be printing the Spring Garden Calendar (April, May, June) in our next newsletter.
Tiny fungi can weaken roots and kill trees

Written by Stephen Pettis
Submitted by Benjamin Shirley

Urban trees tend to have shortened lives, some living no more than 50 to 80 years. The most common causes of urban tree deaths have started to emerge and are very susceptible to non-native and exotic root-rotting organisms. Root rot pathogens can slowly nibble away at trunks and branch roots. Trees of all ages, from young saplings to large, mature trees, are susceptible. Many trees that look perfectly healthy before they begin to die exhibit telltale signs that there are absolutely no structural roots at all. As a University of Georgia Cooperative Extension Specialist in Rockdale County, I have seen many trees in Canary, Georgia, with long roots (a sign of fungi or insects) growing in their bases. The best time to look for these symptoms is after a long period of cool, wet weather.

Bacterial root rot

The “root collar” is where the roots meet the trunk. The collar is critical in functioning as a transition point between the root system and trunk. It is vulnerable to attack by browning bacteria and is susceptible to pathogens. Trees stressed by typical urban conditions have very leaky root collars. Before the leaky collar is encountered, the root system is transferred down to the fungus. The “root collar” is where the roots meet the trunk. The collar is critical in functioning as a transition point between the root system and trunk. It is vulnerable to attack by browning bacteria and is susceptible to pathogens. Trees stressed by typical urban conditions have very leaky root collars. Before the leaky collar is encountered, the root system is transferred down to the fungus.

Reduced root collars reduce the structural integrity of the tree. Adventitious roots are roots that arise from trunks in wood in response to stress. As a tree slowly loses its main roots, it makes new feeder roots. Over the course of one year, a tree can supplement its main root system by creating new, nonstructural, adventitious roots. The following diseases are the most common and viable threats in Southern hardwoods, especially oaks.

Inonotus root rot

The most common root and trunk-rotting fungi of water oaks is Inonotus, fungus that causes water oak’s “knot.” It feeds on the trunk and can seriously undermine tree integrity. Adventitious roots usually show rapid decline. The symptoms include shriveled twig growth, off-color leaves and brown discoloration. Signs of the disease first appear as reddish-orange varnished oaks emerging from the soil around infested trees. These fruiting bodies eventually run out on the top of a mushroom-shaped broken cap. In the later stages of the disease, the fruiting bodies often turn brown. Soil compaction, waterlogging, white oak decline, herbicides and other damage can expose tissue to infection. Sponges infect wounds and fungus spreads through the root collar and into roots, and can spread through root grafts.

Armillaria root rot

Armillaria mellea, or the “shoestring root rot” or “tooth rot”, is a natural root pathogen. It is a very serious, widespread root pathogen that can cause 25 percent of tree deaths in North America. Early symptoms noticeable when it is trifling by big bunches of 12-15 inches. Heavy, colored mushrooms that grow from shallow roots or the root collar. Armillaria causes reduced tree growth, underground chlorotic leaves and death. The fungus attacks in conjunction with other pests, like wood-rotting fungus in the main trunk and root-rotting insects. It kills trees because they become succulent to invasion by bacterial-rooting fungi.

Treatement

Inonotus, Ganoderma and Armillaria are prevenable but curable. Stroubles, damaged and weakened trees are more susceptible, so prevention is key. Avoid taking unnecessary risks of spreading disease. Remove any dead wood. Sanitize tools and equipment between trees. When trees are large, use a combination of several methods to prevent trees from suffering wounds, which become the entryway for fungal infections. For fine, mature trees to support, try not to prune tree roots. Symptoms of decay include leaf drop, bark shedding, little foliage, poor leaf production, and canes in the trunk. Proper fertilization and water management will also move for tree health as many pesticides. If you find bacterial-rooting fungi growing in your garden, you should have the bare evaluated for safety.

Save time and build soil composition by mulching fallen leaves with mower

Written by Frank P. Wooton
Submitted by Stephen Pettis

In the last couple of weeks, we have really seen the most noticeable increase by the falling of leaves. Everyone loves to see this change in our environment, and for good reason. When the leaves are on our trees, it increases the number of leaves that are in the air increasing the potential for you to find them. When the leaves fall, you can find them more easily. While European truffles cost thousands of dollars per pound, the most expensive foods in the world— white truffles, black truffles, and Perigord white truffles—can cost from $200 to $350 per pound. Some of the most expensive truffles are the ones that are found through animals. Therefore, it is important that the blade not be worn out. Mower blades have a very short life, and a clean blade will cut the grass and pick up leaves better than a worn blade. Unfortunately, the tip is usually the first part of the blade to wear out. When the cutting edge of the blade is intact, the knife is sharp and can cut through pieces of dough. The leaf is then cut and the root is left behind. The leaf is then cut and the root is left behind. The root is then cut and the leaf is left behind. The leaf is then cut and the root is left behind.

The following diseases are the most common and viable threats in Southern hardwoods, especially oaks.

Inonotus root rot

The most common root and trunk-rotting fungi of water oaks is Inonotus, fungus that causes water oak’s “knot.” It feeds on the trunk and can seriously undermine tree integrity. Adventitious roots usually show rapid decline. The symptoms include shriveled twig growth, off-color leaves and brown discoloration. Signs of the disease first appear as reddish-orange varnished oaks emerging from the soil around infested trees. These fruiting bodies eventually run out on the top of a mushroom-shaped broken cap. In the later stages of the disease, the fruiting bodies often turn brown. Soil compaction, waterlogging, white oak decline, herbicides and other damage can expose tissue to infection. Sponges infect wounds and fungus spreads through the root collar and into roots, and can spread through root grafts.

Armillaria root rot

Armillaria mellea, or the “shoestring root rot” or “tooth rot”, is a natural root pathogen. It is a very serious, widespread root pathogen that can cause 25 percent of tree deaths in North America. Early symptoms noticeable when it is trifling by big bunches of 12-15 inches. Heavy, colored mushrooms that grow from shallow roots or the root collar. Armillaria causes reduced tree growth, underground chlorotic leaves and death. The fungus attacks in conjunction with other pests, like wood-rotting fungus in the main trunk and root-rotting insects. It kills trees because they become succulent to invasion by bacterial-rooting fungi.

Treatement

Inonotus, Ganoderma and Armillaria are prevenable but curable. Stroubles, damaged and weakened trees are more susceptible, so prevention is key. Avoid taking unnecessary risks of spreading disease. Remove any dead wood. Sanitize tools and equipment between trees. When trees are large, use a combination of several methods to prevent trees from suffering wounds, which become the entryway for fungal infections. For fine, mature trees to support, try not to prune tree roots. Symptoms of decay include leaf drop, bark shedding, little foliage, poor leaf production, and canes in the trunk. Proper fertilization and water management will also move for tree health as many pesticides. If you find bacterial-rooting fungi growing in your garden, you should have the bare evaluated for safety.